Распространенность в природе

Место серы в Периодической системе химических элементов Менделœеева

Историческая справка

Сера

Тема. Сера, азот, фосфор, углерод, кремний, их соединœения, применение

Лекция 4

Сера – одно из немногих веществ, ĸᴏᴛᴏᴩᴏᴇ было известно с древнейших времен, её использовали первые химики. Одна из причин известности серы – распространенность самородной серы в странах древнейших цивилизаций. Её разрабатывали греки и римляне, производство серы значительно увеличилось после изобретения пороха.

Сера расположена в 16 группе Периодической системы химических элементов Менделœеева.

На внешнем энергетическом уровне атома серы содержится 6 электронов, которые имеют электронную конфигурацию 3s 2 3p 4 . В соединœениях с металлами сера проявляет отрицательную степень окисления элементов -2, в соединœениях с кислородом и другими активными неметаллами – положительные +2, +4, +6. Сера – типичный неметалл, исходя из типа превращения должна быть окислителœем и восстановителœем.

Сера довольно широко распространена в природе. Её содержание в земной коре составляет 0,0048 %.Значительная часть серы встречается в самородном состоянии.

Также сера встречается в форме сульфидов: пирит, халькопирит и сульфатов: гипс, целœестин и барит.

Много соединœений серы содержится в нефти (тиофен C 4 H 4 S, органические сульфиды) и нефтяных газах (сероводород).

Существование аллотропных модификаций серы связано с её способностью образовывать устойчивые гомоцепи – S – S –. Устойчивость цепей объясняется тем, что связи – S – S – оказываются прочнее, чем связь в молекуле S 2 . Гомоцепи серы имеют зигзагообразную форму, поскольку в их образовании принимают участие электроны взаимно перпендикулярных р-орбиталей.

Существует три аллотропные модификации серы: ромбическая, моноклинная и пластическая. Ромбическая и моноклинная модификации построены из циклических молекул S 8 , размещенных по узлам ромбической и моноклинной решеток.

Молекула S 8 имеет форму короны, длины всœех связей – S – S – равны 0,206 нм и углы близки к тетраэдрическим 108°.

В ромбической сере наименьший элементарный объём имеет форму прямоугольного параллелœепипеда, а в случае моноклинной серы элементарный объём выделяется в виде скошенного параллелœепипеда.

Кристалл ромбической серы Кристалл моноклинной серы

Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении.

При комнатной температуре устойчива ромбическая сера. При нагревании она плавится, превращаясь в желтую легкоподвижную жидкость, при дальнейшем нагревании жидкость загустевает, так как в ней образуются длинные полимерные цепочки. При медленном охлаждении расплава образуются темно-желтые игольчатые кристаллы моноклинной серы, а если вылить расплавленную серу в холодную воду, получится пластическая сера – резиноподобная структура, состоящая из полимерных цепочек. Пластическая и моноклинная сера неустойчивы и самопроизвольно превращаются в ромбическую.

Аллотропные модификации серы - понятие и виды. Классификация и особенности категории "Аллотропные модификации серы" 2017, 2018.

Сера - довольно распространенный в природе химический элемент (шестнадцатый по содержанию в земной коре и шестой - в природных водах). Встречаются как самородная сера (свободное состояние элемента) так и ее соединения.

Сера в природе

В числе важнейших природных можно назвать железный колчедан, сфалерит, галенит, киноварь, антимонит. В Мировом океане содержится в основном в виде магния и натрия, обуславливающих жесткость природных вод.

Как получают серу?

Добыча серных руд производится разными методами. Основным способом получения серы является ее выплавка непосредственно в местах залегания.

Открытый способ добычи предусматривает использование экскаваторов, снимающих породные пласты, которые покрывают серную руду. После дробления пластов руды взрывами их направляют на сероплавильный завод.

В промышленности серу получают как побочный продукт процессов в печах для плавки, при нефтепереработке. В больших количествах она присутствует в природном газе (в виде сернистого ангидрида или сероводорода), при добыче которого откладывается на стенках применяемого оборудования. Уловленную из газа мелкодисперсную серу используют в химической промышленности в качестве сырья для производства различной продукции.

Данное вещество можно получать и из природного сернистого газа. Для этого используется метод Клауса. Он заключается в применении «серных ям», в которых происходит дегазация серы. Результатом является модифицированная сера, широко использующаяся в производстве асфальта.

Основные аллотропические модификации серы

Сере присуща аллотропия. Известно большое количество аллотропических модификаций. Наиболее известными являются ромбическая (кристаллическая), моноклинная (игольчатая) и пластическая сера. Первые две модификации являются устойчивыми, третья при затвердевании превращается в ромбическую.

Физические свойства, характеризующие серу

Молекулы ромбической (α-S) и моноклинной (β-S) модификаций содержат по 8 атомов серы, которые соединены в замкнутый цикл одинарными ковалентными связями.

В обычных условиях сера имеет ромбическую модификацию. Представляет собой желтое твердое кристаллическое вещество с плотностью 2,07 г/см 3 . Плавится при 113 °C. Плотность моноклинной серы составляет 1,96 г/см 3 , температура ее плавления равна 119,3 °C.

При плавлении сера увеличивается в объеме и становится желтой жидкостью, которая буреет при температуре 160 °C и превращается в вязкую темно-коричневую массу при достижении около 190 °C. При температурах, превышающих это значение, вязкость серы уменьшается. При около 300 °C она снова переходит в жидкое текучее состояние. Это объясняется тем, что в процессе нагревания сера полимеризуется, с повышением температуры увеличивая длину цепочки. А при достижении температурного значения свыше 190 °C наблюдается разрушение полимерных звеньев.

При охлаждении расплава серы естественным путем в цилиндрических тиглях образуется так называемая комовая сера - ромбические кристаллы крупных размеров, имеющие искаженную форму в виде октаэдров с частично «срезанными» гранями или углами.

Если расплавленное вещество подвергнуть резкому охлаждению (к примеру, при помощи холодной воды), то можно получить пластическую серу, представляющую собой упругую каучукоподобную массу коричневатого или темно-красного цвета с плотностью 2,046 г/см 3 . Данная модификация, в отличие от ромбической и моноклинной, является неустойчивой. Постепенно (в течение нескольких часов) она меняет окраску на желтую, становится хрупкой и превращается в ромбическую.

При замораживании паров серы (сильно нагретых) жидким азотом образуется ее пурпурная модификация, которая является устойчивой при температурах ниже минус 80 °C.

В водной среде сера практически не растворяется. Однако характеризуется хорошей растворимостью в органических растворителях. Плохо проводит электричество и тепло.

Температура кипения серы равна 444,6 °C. Процесс кипения сопровождается выделением оранжево-желтых паров, состоящих преимущественно из молекул S 8 , которые при последующем нагревании диссоциируют, в результате чего образуются равновесные формы S 6 , S 4 и S 2 . Далее при нагревании происходит распад крупных молекул, и при температуре выше 900 градусов пары состоят практически только из молекул S 2, диссоциирующих на атомы при 1500 °С.

Какими химическими свойствами обладает сера?

Сера является типичным неметаллом. Химически активна. Окислительно- восстановительные свойства серы проявляются по отношению к множеству элементов. При нагревании легко соединяется практически со всеми элементами, что объясняет ее обязательное присутствие в металлических рудах. Исключение составляют Pt, Au, I 2 , N 2 и инертные газы. Степени окисления, которые проявляет сера в соединениях, -2, +4, +6.

Свойства серы и кислорода обуславливают горение ее на воздухе. Результатом такого взаимодействия является образование сернистого (SO 2) и серного (SO 3) ангидридов, использующихся для получения сернистой и серной кислот.

При комнатной температуре восстановительные свойства серы проявляются только в отношении фтора, в реакции с которым образуется :

  • S + 3F 2 = SF 6 .

При нагревании (в виде расплава) взаимодействует с хлором, фосфором, кремнием, углеродом. В результате реакций с водородом кроме сернистого водорода образует сульфаны, объединенные общей формулой H 2 S Х.

Окислительные свойства серы наблюдаются при взаимодействии с металлами. В некоторых случаях можно наблюдать довольно бурные реакции. В результате взаимодействия с металлами образуются соединения) и полисульфиды (многосернистые металлы).

При длительном нагревании вступает в реакции с концентрированными кислотами-окислителями, окисляясь при этом.

Диоксид серы

Оксид серы (IV), называемый также диоксидом серы и ангидридом сернистым, представляет собой газ (бесцветный) с резким удушающим запахом. Имеет свойство сжижаться под давлением при комнатной температуре. SO 2 является кислотным оксидом. Характеризуется хорошей растворимостью в воде. При этом образуется слабая, неустойчивая сернистая кислота, существующая только в водном растворе. В результате взаимодействия сернистого ангидрида со щелочами образуются сульфиты.

Отличается довольно высокой химической активностью. Наиболее ярко выраженными являются восстановительные химические свойства оксида серы (IV). Такие реакции сопровождаются повышением степени окисления серы.

Окислительные химические свойства оксида серы проявляются в присутствии сильных восстановителей (например, оксида углерода).

Триоксид серы

Триоксид серы (ангидрид серный) - серы (VI). В обычных условиях представляет собой бесцветную легколетучую жидкость, характеризующуюся удушающим запахом. Имеет свойство застывать при температурных значениях ниже 16,9 градуса. При этом образуется смесь разных кристаллических модификаций твердого триоксида серы. Высокие гигроскопические свойства оксида серы обуславливают его "дымление" в условиях влажного воздуха. В результате образуются капельки серной кислоты.

Сероводород

Сероводород является бинарным химическим соединением водорода и серы. H 2 S - это ядовитый бесцветный газ, характерными особенностями которого являются сладковатый вкус и запах протухших яиц. Плавится при температуре минус 86 °С, кипит при минус 60 °С. Неустойчив термически. При температурных значениях выше 400 °С происходит разложение сернистого водорода на S и H 2 . Характеризуется хорошей растворимостью в этаноле. В воде растворяется плохо. В результате растворения в воде образуется слабая сероводородная кислота. Сероводород является сильным восстановителем.

Огнеопасен. При его горении в воздухе можно наблюдать синее пламя. В больших концентрациях способен вступать в реакции со многими металлами.

Серная кислота

Серная кислота (H 2 SO 4) может быть разной концентрации и чистоты. В безводном состоянии является бесцветной маслянистой жидкостью, не имеющей запаха.

Значение температуры, при котором вещество плавится, составляет 10 °С. Температура кипения равна 296 °С. В воде растворяется хорошо. При растворении серной кислоты образуются гидраты, при этом выделяется большое количество теплоты. Температура кипения всех водных растворов при давлении 760 мм рт. ст. превышает 100 °С. Повышение точки кипения происходит с увеличением концентрации кислоты.

Кислотные свойства вещества проявляются при взаимодействии с и основаниями. H 2 SO 4 является двухосновной кислотой, за счет чего может образовывать как сульфаты (средние соли), так и гидросульфаты (кислые соли), большинство из которых растворимы в воде.

Наиболее ярко свойства серной кислоты проявляются в окислительно-восстановительных реакциях. Это объясняется тем, что в составе H 2 SO 4 у серы высшая степень окисления (+6). В качестве примера проявления окислительных свойств серной кислоты можно привести реакцию с медью:

  • Cu + 2H 2 SO 4 = CuSO 4 + 2H 2 O + SO 2 .

Сера: полезные свойства

Сера является микроэлементом, необходимым для живых организмов. Является составной частью аминокислот (метионина и цистеина), ферментов и витаминов. Данный элемент принимает участие в образовании третичной структуры белка. Количество химически связанной серы, содержащейся в белках, составляет по массе от 0,8 до 2,4%. Содержание элемента в организме человека составляет около 2 граммов на 1 кг веса (то есть примерно 0,2% составляет сера).

Полезные свойства микроэлемента трудно переоценить. Защищая протоплазму крови, сера является активным помощником организма в борьбе с вредными бактериями. От ее количества зависит свертываемость крови, то есть элемент помогает поддерживать ее достаточный уровень. Также сера играет не последнюю роль в поддержании нормальных значений концентрации желчи, вырабатываемой организмом.

Часто ее называют «минералом красоты», поскольку она просто необходима для сохранения здоровья кожи, ногтей и волос. Сере присуща способность предохранять организм от различных видов негативного воздействия окружающей среды. Это способствует замедлению процессов старения. Сера очищает организм от токсинов и защищает от радиации, что особенно актуально в настоящее время, учитывая современную экологическую обстановку.

Недостаточное количество микроэлемента в организме может привести к плохому выведению шлаков, снижению иммунитета и жизненного тонуса.

Сера - участница бактериального фотосинтеза. Она является составляющей бактериохлорофилла, а сернистый водород - источником водорода.

Сера: свойства и применение в промышленности

Наиболее широко сера используется для Также свойства данного вещества позволяют применять его для вулканизации каучука, в качестве фунгицида в сельском хозяйстве и даже лекарственного препарата (коллоидная сера). Кроме того, серу используют для производства спичек и она входит в состав серобитумных композиций для изготовления сероасфальта.

Аллотропией называют способность атомов одного элемента формировать разные типы простых веществ. Так образуются соединения, отличные друг от друга.

Аллотропные модификации являются стабильными. В условиях постоянного давления при определенной температуре эти вещества могут переходить одни в другие.

Аллотропные модификации могут образовываться из молекул, имеющих разное количество атомов. Например, элемент Кислород образует озон (О3) и собственно вещество кислород (О2).

Аллотропные модификации могут быть имеющими разное К таким соединениям можно отнести, например, алмаз и графит. Указанные вещества - аллотропные модификации углерода. Этот химический элемент может образовывать пять гексагональный и кубический алмаз, графит, карбин (в двух формах).

Гексагональный алмаз обнаружен в метеоритах и получен в лабораторных условиях при продолжительном нагревании под воздействием очень высокого давления.

Алмаз, как известно, является самым твердым из всех веществ, существующих в природе. Применяется он при бурении горных пород и резке стекла. Алмаз представляет собой бесцветное прозрачное которое обладает высокой светопреломляемостью. Кристаллы алмазов имеют кубическую гранецентрированную решетку. Половина атомов кристалла располагается в центрах граней и вершинах одного куба, а остальная половина атомов - в центрах граней и вершинах другого куба, который смещен относительно первого по направлению пространственной диагонали. Атомы формируют тетраэдрическую трехмерную сетку, в которой они имеют

Из всех простых веществ только в алмазе присутствует максимальное количество атомов, которые располагаются очень плотно. Поэтому соединение является очень прочным и твердым. Прочные связи в углеродных тетраэдрах обеспечивают высокую химическую стойкость. На алмаз может воздействовать только фтор или кислород при температуре восемьсот градусов.

Без доступа воздуха при сильном нагреве алмаз превращается в графит. Это вещество представлено кристаллами темно-серого имеет слабый металлический блеск. На ощупь вещество маслянистое. Графит устойчив к нагреванию, обладает сравнительно высокой тепло- и электропроводностью. Вещество применяют при изготовлении карандашей.

Карбин получают синтетическим путем. Это твердое вещество черного цвета со стеклянным блеском. Без доступа воздуха при нагревании карбин превращается в графит.

Существует еще одна форма углерода - аморфный неупорядоченную структуру получают при нагревании углеродосодержащих соединений. Большие залежи угля обнаруживаются в природных условиях. При этом вещество имеет несколько сортов. Уголь может быть представлен в виде сажи, костяного угля или кокса.

Как уже было указано, аллотропные модификации одного элемента характеризуются разной межатомной структурой. Кроме того, они наделены различными химическими и физическими свойствами.

Сера является еще одним элементом, способным к аллотропии. Это вещество применяется человеком с давних времен. Существуют разные аллотропные модификации серы. Наиболее популярной является ромбическая. Она представлена твердым веществом желтого цвета. Ромбическая сера не смачивается водой (плавает на поверхности). Это свойство применяется при добыче вещества. Ромбическая сера растворима в органических растворителях. Вещество обладает плохой электро- и теплопроводностью.

Кроме этого, существует пластическая и моноклинная сера. Первая представляет собой коричневую аморфную (похожую на резину) массу. Она образуется, если в холодную воду вылить расплавленную серу. Моноклинная представлена в виде темно-желтых игл. Под влиянием комнатной (или приближенной к ней) температуре обе эти модификации переходят в ромбическую серу.

Cера в природе

Самородная сера

Украина, Поволжье, Центральная Азия и др

Сульфиды

PbS - свинцовый блеск

Cu 2 S – медный блеск

ZnS – цинковая обманка

FeS 2 – пирит, серный колчедан, кошачье золото

H 2 S – сероводород (в минеральных источниках и природном газе)

Белки

Волосы, кожные покровы, ногти…

Сульфаты

CaSO 4 x 2 H 2 O - гипс

MgSO 4 x 7 H 2 O – горькая соль (английская)

Na 2 SO 4 x 10 H 2 O – глауберова соль (мирабилит)

Физические свойства

Твердое кристаллическое вещество желтого цвета , нерастворима в воде, водой не смачивается (плавает на поверхности), t ° кип = 445°С

Аллотропия

Для серы характерны несколько аллотропных модификаций:

Ромбическая

(a - сера) - S 8

t ° пл. = 113° C ;

ρ = 2,07 г/см 3 .

Наиболее устойчивая модификация.

Моноклинная

(b - сера) - S 8

темно-желтые иглы,

t ° пл. = 119° C ; ρ = 1,96 г/см3. Устойчивая при температуре более96°С; при обычных условиях превращается в ромбическую.

Пластическая

S n

коричневая резиноподобная (аморфная) масса.Неустойчива, при затвердевании превращается в ромбическую.

c остальными металлами (кроме Au , Pt ) - при повышенной t ° :

2Al + 3S – t ° -> Al 2 S 3

Zn + S – t °-> ZnS ОПЫТ

Cu + S – t °-> CuS ОПЫТ

2) С некоторыми неметаллами сера образует бинарные соединения:

H 2 + S -> H 2 S

2P + 3S -> P 2 S 3

C + 2S -> CS 2

1) c кислородом:

S + O 2 – t ° -> S +4 O 2

2S + 3O 2 – t ° ; pt -> 2S +6 O 3

2) c галогенами (кроме йода):

S + Cl 2 -> S +2 Cl 2

3) c кислотами - окислителями:

S + 2H 2 SO 4 (конц) -> 3S +4 O 2 + 2H 2 O

S + 6HNO 3 (конц) -> H 2 S +6 O 4 + 6NO 2 + 2H 2 O

Применение

Вулканизация каучука, получение эбонита, производство спичек, пороха, в борьбе с вредителями сельского хозяйства, для медицинских целей (серные мази для лечения кожных заболеваний), для получения серной кислоты и т.д.

Применение серы и её соединений

ЗАДАНИЯ

№1. Закончите уравнения реакций:
S + O 2
S + Na
S + H 2
Расставьте коэффициенты методом электронного баланса, укажите окислитель, восстановитель.

№2. Осуществите превращения по схеме:
H 2 S → S → Al 2 S 3 → Al(OH) 3

№3. Закончите уравнения реакций, укажите, какие свойства проявляет сера (окислителя или восстановителя):

Al + S =(при нагревании)

S + H 2 = (150-200)

S + O 2 = (при нагревании)

S + F 2 = (при обычных условиях)

S + H 2 SO 4 (к) =

S + KOH =

S + HNO 3 =

Это интересно...

Содержание серы в организме человека массой 70 кг - 140 г.

В сутки человеку необходимо 1 г серы.

Серой богаты горох, фасоль, овсяные хлопья, пшеница, мясо, рыба, плоды и сок манго.

Сера входит в состав гормонов, витаминов, белков, она есть в хрящевой ткани, в волосах, ногтях. При недостатке серы в организме наблюдается хрупкость ногтей и костей, выпадение волос.

Следите за своим здоровьем!

Знаете ли вы...

·Соединения серы могут служить лекарственными препаратами

·Сера – основа мази для лечения грибковых заболеваний кожи, для борьбы с чесоткой. Тиосульфат натрия Na 2 S 2 O 3 используется для борьбы с нею

·Многие соли серной кислоты содержат кристаллизационную воду: ZnSO 4 ×7H 2 O и CuSO 4 ×5H 2 O. Их применяют как антисептические средства для опрыскивания растений и протравливания зерна в борьбе с вредителями сельского хозяйства

·Железный купорос FeSO 4 ×7H 2 O используют при анемии

·BaSO 4 применяют при рентгенографическом исследовании желудка и кишечника

·Алюмокалиевые квасцы KAI(SO 4) 2 ×12H 2 O - кровоостанавливающее средство при порезах

·Минерал Na 2 SO 4 ×10H 2 O носит название «глауберова соль» в честь открывшего его в VIII веке немецкого химика Глаубера И.Р. Глаубер во время своего путешествия внезапно заболел. Он ничего не мог есть, желудок отказывался принимать пищу. Один из местных жителей направил его к источнику. Как только он выпил горькую соленую воду, сразу стал есть. Глаубер исследовал эту воду, из нее выкристаллизовалась соль Na 2 SO 4 ×10H 2 O. Сейчас ее применяют как слабительное в медицине, при окраске хлопчато- бумажных тканей. Соль также находит применение в производстве стекла

·Тысячелистник обладает повышенной способностью извлекать из почвы серу и стимулировать поглощение этого элемента с соседними растениями

·Чеснок выделяет вещество – альбуцид, едкое соединение серы. Это вещество предотвращает раковые заболевания, замедляет старение, предупреждает сердечные заболевания.

Это понятие широко распространено в природе. К примеру, кислород и озон - это вещества, состоящие только из химического элемента оксигена. Как это возможно? Давайте разбираться вместе.

Определение понятия

Аллотропией называют явление существования одного химического элемента в виде двух или более простых веществ. Его открывателем по праву считается химик и минеролог из Швеции Йенс Берцелиус. Аллотропия - это явление, которое имеет много общего с полиморфизмом кристаллов. Это вызвало долгие споры среди ученых. В настоящее время они пришли к мнению, что полиморфизм характерен только для твердых простых веществ.

Причины аллотропии

Образовывать несколько простых веществ могут не все химические элементы. Способность к аллотропии обусловлена строением атома. Чаще всего она встречается у элементов, имеющих переменное значение степени окисления. К ним относятся полу- и неметаллы, инертные газы и галогены.

Аллотропия может быть обусловлена несколькими причинами. К ним относится разное количество атомов, порядок их соединения в молекулу, параллельность спинов электронов, тип кристаллической решетки. Рассмотрим данные виды аллотропии на конкретных примерах.

Кислород и озон

Данный вид аллотропии - пример того, как разное количество атомов одного химического элемента определяет физические и химические Это касается и физиологического влияния на живые организмы. Так, кислород состоит из двух атомов оксигена, озон - из трех.

В чем же отличия этих веществ? Оба они газообразны. Кислород не имеет цвета, вкуса и запаха, он в полтора раза легче озона. Это вещество хорошо растворяется в воде, причем с понижением температуры скорость этого процесса только увеличивается. Кислород необходим всем организмам для дыхания. Поэтому это вещество является жизненно важным.

Озон имеет голубой цвет. Его характерный запах ощущал каждый из нас после дождя. Он резкий, но довольно приятный. По сравнению с кислородом, озон более химически активен. В чем же причина? При разложении озона образуется молекула кислорода и свободный атом оксигена. Он тут же вступает в образуя новые вещества.

Удивительные свойства углерода

А вот количество атомов в молекуле углерода всегда остается неизменным. При этом он образует абсолютно разные вещества. Самыми распространенными модификациями углерода являются алмаз и графит. Первое вещество считается самым твердым на планете. Это свойство обусловлено тем, что атомы в алмазе связаны прочными ковалентными связями по всем направлениям. В совокупности они образуют трехмерную сеть из тетраэдров.

У графита прочные связи формируются только между атомами, расположенными в горизонтальной плоскости. По этой причине разломать графитовый стержень вдоль практически невозможно. А вот связи, которые соединяют горизонтальные слои углерода между собой, очень слабые. Поэтому каждый раз, когда мы проводим простым карандашом по бумаге, на ней остается серый след. Это и есть слой углерода.

Аллотропия серы

Причина модификаций серы также заключается в особенностях внутренней структуры молекул. Самой устойчивой формой является ромбическая. Кристаллы этого вида аллотропии серы называют ромбоидальными. Каждый из них образован коронообразными молекулами, в состав каждой из которой входит 8 атомов. По физическим свойствам ромбическая сера является твердым веществом желтого цвета. Она не только не растворяется в воде, но даже не смачивается ею. Показатели тепло- и электропроводности очень низкие.

Структура моноклинной серы представлена параллелепипедом со скошенными углами. вещество напоминает иглы темно-желтого цвета. Если серу расплавить, а потом поместить в холодную воду, образуется ее новая модификация. Ее первоначальная структура разрушится до полимерных цепей разной длины. Так получают пластическую серу - резиноподобную массу коричневого цвета.

Модификации фосфора

Ученые насчитывают 11 видов фосфора. Его аллотропия была открыта практически случайно, как и само это вещество. В поисках философского камня алхимик Бранд получил светящуюся сухую субстанцию в результате выпаривания мочи. Это был белый фосфор. Данное вещество характеризуется большой химической активностью. Достаточно повышения температуры до 40 градусов, чтобы белый фосфор вступил в реакцию с кислородом и воспламенился.

Для фосфора причина аллотропии - это изменение в структуре кристаллической решетки. Изменить ее можно только при определенных условиях. Так, увеличив давление и температуру в атмосфере углекислого газа, получают красный фосфор. Химически он менее активен, поэтому для него не характерно свечение. При нагревании он превращается в пар. Мы наблюдаем это каждый раз, зажигая обычные спички. Терочная поверхность как раз содержит красный фосфор.

Итак, аллотропия - одного химического элемента в виде нескольких простых веществ. Чаще всего встречается среди неметаллов. Основными причинами этого явления считаются разное количество атомов, образующих молекулу вещества, а также изменение конфигурации кристаллической решетки.


Close