"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А 1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В 1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С 1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А 1 В 1 С 1 .

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

m - количество возможных благоприятных случаев.

n - все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

W n (A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

A n m =n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

A n m =n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

P n (m) = C n m ×p m ×q n-m .

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

C n m = n! / m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

P n (m)=λ m /m! × e (-λ) .

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е -λ = lim n ->∞ (1-λ/n) n .

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) - условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

В итоге получим:

Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В 1) = 2%/100% = 0,02;

Р(А/В 2) = 0,04;

Р (А/В 3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

Курс математики готовит школьникам массу сюрпризов, один из которых - это задача по теории вероятности. С решением подобных заданий у учащихся возникает проблема практически в ста процентах случаев. Чтобы понимать и разбираться в данном вопросе, необходимо знать основные правила, аксиомы, определения. Для понимания текста в книге, нужно знать все сокращения. Всему этому мы и предлагаем обучиться.

Наука и ее применение

Так как мы предлагаем ускоренный курс «теория вероятности для чайников», то сначала необходимо ввести основные понятия и буквенные сокращения. Для начала определимся с самим понятием «теория вероятности». Что же это за наука и для чего она нужна? Теория вероятности - это один из разделов математики, который изучает случайные явления и величины. Так же она рассматривает закономерности, свойства и операции, совершаемые с этими случайными величинами. Для чего она нужна? Широкое распространение наука получила в изучении природных явлений. Любые природные и физические процессы не обходятся без присутствия случайности. Даже если во время опыта были максимально точно зарегистрированы результаты, при повторе того же испытания, результат с большой вероятностью не будет таким же.

Примеры задач по мы обязательно рассмотрим, вы сами сможете в этом убедиться. Исход зависит от множества различных факторов, которые практически невозможно учесть или зарегистрировать, но тем не менее они оказывают огромнейшее влияние на исход опыта. Яркими примерами могут служить задачи определения траектории движения планет или определение прогноза погоды, вероятность встретить знакомого человека во время пути на работу и определение высоты прыжка спортсмена. Так же теория вероятности оказывает большую помощь брокерам на фондовых биржах. Задача по теории вероятности, с решением которой раньше возникало много проблем, станет для вас сущим пустяком после трех-четырех примеров, приведенных ниже.

События

Как уже говорилось ранее, наука изучает события. Теория вероятностей, примеры решения задач мы рассмотрим немного позже, изучает только один вид - случайные. Но тем не менее необходимо знать, что события могут быть трех видов:

  • Невозможные.
  • Достоверные.
  • Случайные.

Предлагаем немного оговорить каждый из них. Невозможное событие никогда не произойдет, ни при каких условиях. Примерами могут служить: замерзание воды при плюсовой температуре, вытягивание кубика из мешка с шарами.

Достоверное событие происходит всегда со стопроцентной гарантией, если выполнены все условия. Например: вы получили заработную плату за проделанную работу, получили диплом о высшем профессиональном образовании, если добросовестно учились, сдали экзамены и защитили диплом и так далее.

Со все немного сложнее: в ходе опыта оно может произойти или нет, например, вытащить туз из карточной колоды, сделав не более трех попыток. Результат можно получить как с первой попытки, так и, вообще, не получить. Именно вероятность происхождения события и изучает наука.

Вероятность

Это в общем смысле оценка возможности удачного исхода опыта, при котором наступает событие. Вероятность оценивается на качественном уровне, особенно если количественная оценка невозможна или затруднительна. Задача по теории вероятности с решением, точнее с оценкой подразумевает нахождение той самой возможной доли благополучного исхода. Вероятность в математике - это числовая характеристики события. Она принимает значения от нуля до единицы, обозначается буквой Р. Если Р равняется нулю, то событие произойти не может, если единице, то событие произойдет со стопроцентной вероятностью. Чем больше Р приближается к единице, тем сильнее вероятность благополучного исхода, и наоборот, если близко к нулю, то и событие произойдет с малой вероятностью.

Сокращения

Задача по теории вероятности, с решением которой вы вскоре столкнетесь, может содержать следующие сокращения:

  • Р и Р(Х);
  • А, В, С и т. д;

Возможны и некоторые другие: по мере необходимости будут вноситься добавочные объяснения. Предлагаем, для начала, пояснить представленные выше сокращения. Первым в нашем списке встречается факториал. Для того чтобы было понятно, приведем примеры: 5!=1*2*3*4*5 или 3!=1*2*3. Далее, в фигурных скобках пишут заданные множества, например: {1;2;3;4;..;n} или {10;140;400;562}. Следующее обозначение - это множество натуральных чисел, довольно часто встречается в заданиях по теории вероятности. Как уже говорилось ранее, Р - это вероятность, а Р(Х) - это вероятность происхождения события Х. Большими буквами латинского алфавита обозначаются события, например: А - попался белый шар, В - синий, С - красный или соответственно, . Маленькая буква n - это количество всех возможных исходов, а m - количество благополучных. Отсюда и получаем правило нахождения классической вероятности в элементарных задачах: Р=m/n. Теория вероятности «для чайников», наверное, и ограничивается данными знаниями. Теперь для закрепления переходим к решению.

Задача 1. Комбинаторика

Студенческая группа насчитывает тридцать человек, из которых необходимо выбрать старосту, его заместителя и профорга. Необходимо найти количество способов сделать данное действие. Подобное задание может встретиться на ЕГЭ. Теория вероятности, решение задач которой мы сейчас рассматриваем, может включать задачи из курса комбинаторики, нахождение классической вероятности, геометрической и задачи на основные формулы. В данном примере мы решаем задание из курса комбинаторики. Переходим к решению. Это задание простейшее:

  1. n1=30 - возможных старост студенческой группы;
  2. n2=29 - те, кто могут занять пост заместителя;
  3. n3=28 человек претендует на должность профорга.

Все, что нам остается сделать, это найти возможное количество вариантов, то есть перемножить все показатели. В результате мы получаем: 30*29*28=24360.

Это и будет ответом на поставленный вопрос.

Задача 2. Перестановка

На конференции выступают 6 участников, порядок определяется жеребьевкой. Нам нужно найти количество возможных вариантов жеребьевки. В данном примере, мы рассматриваем перестановку из шести элементов, то есть нам нужно найти 6!

В пункте сокращений мы уже упоминали, что это такое и как вычисляется. Итого получается, что существует 720 вариантов жеребьевки. На первый взгляд тяжелое задание имеет вполне короткое и простое решение. Это и есть задания, которые рассматривает теория вероятности. Как решать задачи более высокого уровня, мы рассмотрим в следующих примерах.

Задача 3

Группу студентов из двадцати пяти человек необходимо разбить на три подгруппы по шесть, девять и десять человек. Мы имеем: n=25, k=3, n1=6, n2=9, n3=10. Осталось подставить значения в нужную формулу, мы получаем: N25(6,9,10). После несложных вычислений мы получаем ответ - 16 360 143 800. Если в задании не говорится о том, что необходимо получить числовое решение, то можно дать его в виде факториалов.

Задача 4

Три человека загадали числа от одного до десяти. Найдите вероятность того, что у кого-то числа совпадут. Сначала мы должны узнать число всех исходов - в нашем случае это тысяча, то есть десять в третей степени. Теперь найдем количество вариантов, когда все загадали разные числа, для этого перемножаем десять, девять и восемь. Откуда взялись эти числа? Первый загадывает число, у него есть десять вариантов, второй имеет уже девять, а третьему надо выбирать из восьми оставшихся, таким образом получаем 720 возможных вариантов. Как уже мы посчитали ранее, всего вариантов 1000, а без повторений 720, следовательно, нас интересуют оставшиеся 280. Теперь нам нужна формула нахождения классической вероятности: Р= . Мы получили ответ: 0,28.

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого - 3, для пятого - 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго - 5 способами, третьего - четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

Ответ: 0,06.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Теория вероятностей - математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми.

Утверждение о том, что какое-либо событие наступает с вероятностью , равной, например, ½, ещё не представляет само по себе окончательной ценности, так как мы стремимся к достоверному знанию. Окончательную познавательную ценность имеют те результаты теории вероятностей, которые позволяют утверждать, что вероятность наступления какого-либо события А весьма близка к единице или (что то же самое) вероятность не наступления события А весьма мала. В соответствии с принципом "пренебрежения достаточно малыми вероятностями" такое событие справедливо считают практически достоверным. Ниже (в разделе Предельные теоремы) показано, что имеющие научный и практический интерес выводы такого рода обычно основаны на допущении, что наступление или не наступление события А зависит от большого числа случайных, мало связанных друг с другом факторов. Поэтому можно также сказать, что теория вероятностей есть математическая наука, выясняющая закономерности, которые возникают при взаимодействии большого числа случайных факторов.

Предмет теории вероятностей.

Для описания закономерной связи между некоторыми условиями S и событием А, наступление или не наступление которого при данных условиях может быть точно установлено, естествознание использует обычно одну из следующих двух схем:

а) при каждом осуществлении условий S наступает событие А. Такой вид, например, имеют все законы классической механики, которые утверждают, что при заданных начальных условиях и силах, действующих на тело или систему тел, движение будет происходить однозначно определённым образом.

б) При условиях S событие А имеет определённую вероятность P (A / S), равную р. Так, например, законы радиоактивного излучения утверждают, что для каждого радиоактивного вещества существует определённая вероятность того, что из данного количества вещества за данный промежуток времени распадётся какое-либо число N атомов.

Назовем частотой события А в данной серии из n испытаний (то есть из n повторных осуществлений условий S) отношение h = m/n числа m тех испытаний, в которых А наступило, к общему их числу n. Наличие у события А при условиях S определённой вероятности, равной р, проявляется в том, что почти в каждой достаточно длинной серии испытаний частота события А приблизительно равна р.

Статистические закономерности, то есть закономерности, описываемые схемой типа (б), были впервые обнаружены на примере азартных игр, подобных игре в кости. Очень давно известны также статистические закономерности рождения, смерти (например, вероятность новорождённому быть мальчиком равна 0,515). Конец 19 в. и 1-я половина 20 в. отмечены открытием большого числа статистических закономерностей в физике, химии, биологии и т.п.

Возможность применения методов теории вероятностей к изучению статистических закономерностей, относящихся к весьма далёким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям, о которых будет сказано ниже (см. раздел Основные понятия теории вероятностей). Изучение свойств вероятностей событий на основе этих простых соотношений и составляет предмет теории вероятностей.

Основные понятия теории вероятностей.

Наиболее просто определяются основные понятия теории вероятностей как математической дисциплины в рамках так называемой элементарной теории вероятностей. Каждое испытание Т, рассматриваемое в элементарной теорией вероятностей, таково, что оно заканчивается одним и только одним из событий E1, E2,..., ES (тем или иным, в зависимости от случая). Эти события называются исходами испытания. С каждым исходом Ek связывается положительное число рк - вероятность этого исхода. Числа pk должны при этом в сумме давать единицу. Рассматриваются затем события А, заключающиеся в том, что "наступает или Ei, или Ej,..., или Ek". Исходы Ei, Ej,..., Ek называются благоприятствующими А, и по определению полагают вероятность Р (А) события А, равной сумме вероятностей благоприятствующих ему исходов:

P (A) = pi + ps + … + pk. (1)

Частный случай p1 = p2 =... ps = 1/S приводит к формуле

Р (А) = r/s. (2)

Формула (2) выражает так называемое классическое определение вероятности, в соответствии с которым вероятность какого-либо события А равна отношению числа r исходов, благоприятствующих А, к числу s всех "равновозможных" исходов. Классическое определение вероятности лишь сводит понятие "вероятности" к понятию "равновозможности", которое остаётся без ясного определения.

Пример. При бросании двух игральных костей каждый из 36 возможных исходов может быть обозначен (i, j), где i - число очков, выпадающее на первой кости, j - на второй. Исходы предполагаются равновероятными. Событию А - "сумма очков равна 4", благоприятствуют три исхода (1; 3), (2; 2), (3; 1). Следовательно, Р (A) = 3/36 = 1/12.

Исходя из каких-либо данных событий, можно определить два новых события: их объединение (сумму) и совмещение (произведение). Событие В называется объединением событий A 1, A 2,..., Ar,-, если оно имеет вид: "наступает или A1, или А2,..., или Ar".

Событие С называется совмещением событий A1, А.2,..., Ar, если оно имеет вид: "наступает и A1, и A2,..., и Ar". Объединение событий обозначают знаком È, а совмещение - знаком Ç. Таким образом, пишут:

B = A1 È A2 È … È Ar, C = A1 Ç A2 Ç … Ç Ar.

События А и В называют несовместными, если их одновременное осуществление невозможно, то есть если не существует среди исходов испытания ни одного благоприятствующего и А, и В.

С введёнными операциями объединения и совмещения событий связаны две основные теоремы В. т. - теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей. Если события A1, A2,..., Ar таковы, что каждые два из них несовместны, то вероятность их объединения равна сумме их вероятностей.

Так, в приведённом выше примере с бросанием двух костей событие В - "сумма очков не превосходит 4", есть объединение трёх несовместных событий A2, A3, A4, заключающихся в том, что сумма очков равна соответственно 2, 3, 4. Вероятности этих событий 1/36; 2/36; 3/36. По теореме сложения вероятность Р (В)равна

1/36 + 2/36 + 3/36 = 6/36 = 1/6.

Условную вероятность события В при условии А определяют формулой


что, как можно показать, находится в полном соответствии со свойствами частот. События A1, A2,..., Ar называются независимыми, если условная вероятность каждого из них при условии, что какие-либо из остальных наступили, равна его "безусловной" вероятности

Теорема умножения вероятностей. Вероятность совмещения событий A1, A2,..., Ar равна вероятности события A1,умноженной на вероятность события A2, взятую при условии, что А1 наступило,..., умноженной на вероятность события Ar при условии, что A1, A2,..., Ar-1 наступили. Для независимых событий теорема умножения приводит к формуле:

P (A1 Ç A2 Ç … Ç Ar) = P (A1) Ї P (A2) Ї … Ї P (Ar), (3)

то есть вероятность совмещения независимых событий равна произведению вероятностей этих событий. Формула (3) остаётся справедливой, если в обеих её частях некоторые из событий заменить на противоположные им.

Пример. Производится 4 выстрела по цели с вероятностью попадания 0,2 при отдельном выстреле. Попадания в цель при различных выстрелах предполагаются независимыми событиями. Какова вероятность попадания в цель ровно три раза?

Каждый исход испытания может быть обозначен последовательностью из четырёх букв [напр., (у, н, н, у) означает, что при первом и четвёртом выстрелах были попадания (успех), а при втором и третьем попаданий не было (неудача)]. Всего будет 2Ї2Ї2Ї2 = 16 исходов. В соответствии с предположением о независимости результатов отдельных выстрелов следует для определения вероятностей этих исходов использовать формулу (3) и примечание к ней. Так, вероятность исхода (у, н. н, н) следует положить равной 0,2Ї0,8Ї0,8Ї0,8 = 0,1024; здесь 0,8 = 1-0,2 - вероятность промаха при отдельном выстреле. Событию "в цель попадают три раза" благоприятствуют исходы (у, у, у, н), (у, у, н, у), (у, н, у, у). (н, у, у, у), вероятность каждого одна и та же:

0,2Ї0,2Ї0,2Ї0,8 =...... =0,8Ї0,2Ї0,2Ї0,2 = 0,0064;

следовательно, искомая вероятность равна

4Ї0,0064 = 0,0256.

Обобщая рассуждения разобранного примера, можно вывести одну из основных формул теории вероятностей: если события A1, A2,..., An независимы и имеют каждое вероятность р, то вероятность наступления ровно m из них равна

Pn (m) = Cnmpm (1 - p) n-m; (4)

здесь Cnm обозначает число сочетаний из n элементов по m. При больших n вычисления по формуле (4) становятся затруднительными. Пусть в предыдущем примере число выстрелов равно 100, и ставится вопрос об отыскании вероятности х того, что число попаданий лежит в пределах от 8 до 32. Применение формулы (4) и теоремы сложения даёт точное, но практически мало пригодное выражение искомой вероятности


Приближённое значение вероятности х можно найти по теореме Лапласа

причём ошибка не превосходит 0,0009. Найденный результат показывает, что событие 8 £ m £ 32 практически достоверно. Это самый простой, но типичный пример использования предельных теорем теории вероятностей.

К числу основных формул элементарной теории вероятностей относится также так называемая формула полной вероятности: если события A1, A2,..., Ar попарно несовместны и их объединение есть достоверное событие, то для любого события В его вероятность равна сумме


Теорема умножения вероятностей оказывается особенно полезной при рассмотрении составных испытаний. Говорят, что испытание Т составлено из испытаний T1, T2,..., Tn-1, Tn, есликаждый исход испытания Т есть совмещение некоторых исходов Ai, Bj,..., Xk, Yl соответствующих испытаний T1, T2,..., Tn-1, Tn. Из тех или иных соображений часто бывают известны вероятности


Классификация событий на возможные, вероятные и случайные. Понятия простого и сложного элементарного события. Операции над событиями. Классическое определение вероятности случайного события и её свойства. Элементы комбинаторики в теории вероятностей. Геометрическая вероятность. Аксиомы теории вероятностей.

Классификация событий

Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом , или испытанием , понимается осуществление определённого комплекса условий.


Примеры событий:

    – попадание в цель при выстреле из орудия (опыт - произведение выстрела; событие - попадание в цель);
    – выпадение двух гербов при трёхкратном бросании монеты (опыт - трёхкратное бросание монеты; событие - выпадение двух гербов);
    – появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности; событие - ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т.д.


Различают события совместные и несовместные . События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие - выпадание трех очков на первой игральной кости, событие - выпадание трех очков на второй кости. и - совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие - наудачу взятая коробка окажется с обувью черного цвета, событие - коробка окажется с обувью коричневого цвета, и - несовместные события.


Событие называется достоверным , если оно обязательно произойдет в условиях данного опыта.


Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная - невозможным.


Событие называется возможным , или случайным , если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.


События называются равновозможными , если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.


Важным понятием является полная группа событий . Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. - появление красного шара при одном извлечении, - появление белого шара, - появление шара с номером. События образуют полную группу совместных событий.


Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие . Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным - событие , либо бракованным - событие .

Операции над событиями

При разработке аппарата и методики исследования случайных событий в теории вероятностей очень важным является понятие суммы и произведения событий.


Суммой, или объединением, нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий.


Сумма событий обозначается так:


Например, если событие есть попадание в цель при первом выстреле, событие - при втором, то событие есть попадание в цель вообще, безразлично, при каком выстреле - первом, втором или при обоих вместе.


Произведением, или пересечением, нескольких событий называется событие, состоящее в совместном появлении всех этих событий.


Произведение событий обозначается


Например, если событие есть попадание в цель при первом выстреле, событие - при втором, то событие состоит в том, что в цель попали при обоих выстрелах.


Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию. Пусть событие состоит в попадании точки в область , событие - в попадании в область , тогда событие состоит в попадании точки в область, заштрихованную на рис. 1, и событие - в попадании точки в область, заштрихованную на рис. 2.


Классическое определение вероятности случайного события

Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события.


Вероятностью события называется число, являющееся выражением меры объективной возможности появления события.


Вероятность события будем обозначать символом .


Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.



Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число , число случаев , благоприятствующих данному событию, и затем выполнить расчет по формуле (1.1).


Из формулы (1.1) следует, что вероятность события является неотрицательным числом и может изменяться в пределах от нуля до единицы в зависимости от того, какую долю составляет благоприятствующее число случаев от общего числа случаев:


Свойства вероятности

Свойство 1. Если все случаи являются благоприятствующими данному событию , то это событие обязательно произойдет. Следовательно, рассматриваемое событие является достоверным, а вероятность его появления , так как в этом случае



Свойство 2. Если нет ни одного случая, благоприятствующего данному событию , то это событие в результате опыта произойти не может. Следовательно, рассматриваемое событие является невозможным, а вероятность его появления , так как в этом случае :



Свойство 3. Вероятность наступления событий, образующих полную группу, равна единице.


Свойство 4. Вероятность наступления противоположного события определяется так же, как и вероятность наступления, события :



где - число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события :



Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.

Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.


Решение. Обозначим событие, состоящее в том, что набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных исходов равно 10. Эти исходы единственно возможны (одна из цифр набрана обязательно) и равновозможны (цифра набрана наудачу). Благоприятствует событию лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех исходов:


Элементы комбинаторики

В теории вероятностей часто используют размещения, перестановки и сочетания. Если дано множество , то размещением (сочетанием) из элементов по называется любое упорядоченное (неупорядоченное) подмножество элементов множества . При размещение называется перестановкой из элементов.


Пусть, например, дано множество . Размещениями из трех элементов этого множества по два являются , , , , , ; сочетаниями - , , .


Два сочетания различаются хотя бы одним элементом, а размещения различаются либо самими элементами, либо порядком их следования. Число сочетаний из элементов по вычисляется по формуле



есть число размещений из элементов по ; - число перестановок из элементов.

Пример 2. В партии из 10 деталей имеется 7 стандартных. Найти вероятность того, что среди взятых наудачу 6 деталей ровно 4 стандартных.


Решение. Общее число возможных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. равно - числу сочетаний из 10 элементов по 6. Число исходов, благоприятствующих событию (среди 6 взятых деталей ровно 4 стандартных), определяем так: 4 стандартные детали можно взять из 7 стандартных деталей способами; при этом остальные детали должны быть нестандартными; взять же 2 нестандартные детали из нестандартных деталей можно способами. Следовательно, число благоприятствующих исходов равно . Исходная вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех исходов:


Статистическое определение вероятности

Формулу (1.1) используют для непосредственного вычисления вероятностей событий только тогда, когда опыт сводится к схеме случаев. На практике часто классическое определение вероятности неприменимо по двум причинам: во-первых, классическое определение вероятности предполагает, что общее число случаев должно быть конечно. На самом же деле оно зачастую не ограничено. Во-вторых, часто невозможно представить исходы опыта в виде равновозможных и несовместных событий.


Частота появления событий при многократно повторяющихся Опытах имеет тенденцию стабилизироваться около какой-то постоянной величины. Таким образом, с рассматриваемым событием можно связать некоторую постоянную величину, около которой группируются частоты и которая является характеристикой объективной связи между комплексом условий, при которых проводятся опыты, и событием.


Вероятностью случайного события называется число, около которого группируются частоты этого события по мере увеличения числа испытаний.


Это определение вероятности называется статистическим.


Преимущество статистического способа определения вероятности состоит в том, что он опирается на реальный эксперимент. Однако его существенный недостаток заключается в том, что для определения вероятности необходимо выполнить большое число опытов, которые очень часто связаны с материальными затратами. Статистическое определение вероятности события хотя и достаточно полно раскрывает содержание этого понятия, но не дает возможности фактического вычисления вероятности.

В классическом определении вероятности рассматривается полная группа конечного числа равновозможных событий. На практике очень часто число возможных исходов испытаний бесконечно. В таких случаях классическое определение вероятности неприменимо. Однако иногда в подобных случаях можно воспользоваться другим методом вычисления вероятности. Для определенности ограничимся двумерным случаем.


Пусть на плоскости задана некоторая область площадью , в которой содержится другая область площадью (рис. 3). В область наудачу бросается точка. Чему равна вероятность того, что точка попадет в область ? При этом предполагается, что наудачу брошенная точка может попасть в любую точку области , и вероятность попасть в какую-либо часть области пропорциональна площади части и не зависит от ее расположения и формы. В таком случае вероятность попадания в область при бросании наудачу точки в область



Таким образом, в общем случае, если возможность случайного появления точки внутри некоторой области на прямой, плоскости или в пространстве определяется не положением этой области и ее границами, а только ее размером, т. е. длиной, площадью или объемом, то вероятность попадания случайной точки внутрь некоторой области определяется как отношение размера этой области к размеру всей области, в которой может появляться данная точка. Это есть геометрическое определение вероятности.


Пример 3. Круглая мишень вращается с постоянной угловой скоростью. Пятая часть мишени окрашена в зеленый цвет, а остальная - в белый (рис. 4). По мишени производится выстрел так, что попадание в мишень - событие достоверное. Требуется определить вероятность попадания в сектор мишени, окрашенный в зелёный цвет.


Решение. Обозначим - "выстрел попал в сектор, окрашенный в зелёный цвет". Тогда . Вероятность получена как отношение площади части мишени, окрашенной в зелёный цвет, ко всей площади мишени, поскольку попадания в любые части мишени равновозможны.

Аксиомы теории вероятностей

Из статистического определения вероятности случайного события следует, что вероятность события есть число, около которого группируются частоты этого события, наблюдаемые на опыте. Поэтому аксиомы теории вероятностей вводятся так, чтобы вероятность события обладала основными свойствами частоты.


Аксиома 1. Каждому событию соответствует определенное число , удовлетворяющее условию и называемое его вероятностью.


Close